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We establish a higher-dimensional version of multifractal analysis for hyperbolic
flows. This means that we consider simultaneously the level sets of several
Birkhoff averages. Examples are the Lyapunov exponents as well as the point-
wise dimension and the local entropy of a given measure. More precisely, we
consider multifractal spectra associated to multi-dimensional parameters,
obtained by computing the entropy of the level sets associated to the Birkhoff
averages. We also consider the more general class of flows with upper semi-
continuous metric entropy. The multifractal analysis is obtained here from a
variational principle for the topological entropy of the level sets, showing that
their topological entropy can be arbitrarily approximated by the entropy of
ergodic measures. This principle unifies many results. An analogous principle
holds for the Hausdorff dimension. The applications include the study of the
regularity of the spectra, the description of how these vary under small pertur-
bations, and the detailed study of the finer structure. The higher-dimensional
spectra also exhibit new nontrivial phenomena absent in the one-dimensional
multifractal analysis.
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1. INTRODUCTION

1.1. Motivation

Our work is a contribution to the dimension theory of dynamical systems,
and in particular to the associated multifractal analysis. The multifractal
spectra—one of the main components of multifractal analysis—encode



important information about the complexity of the invariant sets of a
dynamical system. More precisely, given an invariant function, its asso-
ciated multifractal spectra describe the complexity of the (invariant) level
sets of the function. These functions are usually only measurable and thus
their level sets are rarely manifolds. Hence, in order to measure their com-
plexity it is appropriate to use quantities such as the topological entropy or
the Hausdorff dimension. Among the invariant functions we can consider
several ‘‘natural’’ ones associated to the dynamics, such as Birkhoff aver-
ages, Lyapunov exponents, pointwise dimensions, and local entropies.

We briefly recall here the main components of multifractal analysis
and in particular the notions of dimension spectrum and more generally of
multifractal spectrum of a dynamical system. Let F={jt}t ¥ R be a flow on
M preserving a finite measure m. By Birkhoff ’s ergodic theorem, for each
measurable function a: M Q R with >M |a| dm < . the limit

aF(x)=lim
t Q .

1
t

F
t

0
a(js x) ds

exists for m-almost every point x ¥ M. Furthermore, if m is ergodic (i.e., if
every F-invariant set has either zero or full measure), then

aF(x)=
1

m(M)
F

M
a dm (1)

for m-almost every x ¥ M. We note that this does not mean that the identity
in (1) is valid for every point x ¥ M for which aF(x) is well-defined. For
each a ¥ R we define the level set

Ka(a)={x ¥ M : aF(x)=a},

i.e., the set of points x ¥ M such that aF(x) is well-defined and equal to a.
We also consider the set

K(a)=3x ¥ M : lim inf
t Q .

1
t

F
t

0
a(js x) ds < lim sup

t Q .

1
t

F
t

0
a(js x) ds4 .

Clearly,

M=K(a) 2 0
a ¥ R

Ka(a). (2)
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We call the decomposition of M in (2) a multifractal decomposition.
One way to measure the complexity of the sets Ka(a) is to compute their
Hausdorff dimension. Namely, we define a function

D: {a ¥ R : Ka(a) ] ”} Q R

by

D(a)=dimH Ka(a),

where dimH A denotes the Hausdorff dimension of the set A. The function
D is called the dimension spectrum of F for the Birkhoff averages of a. One
can also consider other characteristics to measure the complexity of the sets
Ka(a). For example, we obtain the entropy spectra by considering the
topological entropy of F on Ka(a).

The concept of multifractal analysis was suggested by Halsey, Jensen,
Kadanoff, Procaccia, and Shraiman in ref. 10. The first rigorous approach
is due to Collet, Lebowitz, and Porzio in ref. 9 for a class of measures
invariant under one-dimensional Markov maps. In ref. 13, Lopes con-
sidered the measure of maximal entropy for hyperbolic Julia sets, and in
ref. 16, Rand studied Gibbs measures for a class of repellers. We refer
the reader to the book by Pesin (14) for a detailed discussion and further
references.

It is believed by the specialists that the information encoded by the
multifractal spectra can be used to recover the dynamical system (possibly
up to some appropriate equivalence). This approach is particularly wel-
come in view of the fact that the multifractal spectra (at least for ‘‘natural’’
invariant functions associated to the dynamics) can be determined with
arbitrary precision, while this may not be the case with the dynamical
system, that may not be known a priori or at least may not be known with
arbitrary precision. We remark that this approach is unrelated to the recon-
struction of strange attractors and other characteristics from the analysis
of time-series. Namely, instead of dealing with local quantities associated
to the behavior of a single trajectory (in terms of an appropriate finite-
dimensional coordinate system), we deal here with quantities of global
nature, that are encoded in the multifractal spectra.

1.2. Main Results

Our main result is a variational principle for flows with upper semi-
continuous metric entropy and potentials with a unique equilibrium
measure (see the discussion below on these assumptions). More precisely,
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we consider multi-dimensional versions of entropy and dimension spectra
for flows with upper semi-continuous entropy, and establish a variational
principle for these spectra. In particular, we unify and extend the results in
the literature. As such, our paper contributes to the global view of the
theory of multifractal analysis in the case of flows. We point out that some
of our results are new even in the case of one-dimensional multifractal
spectra.

We briefly recall here the notion of metric entropy (see Section 2.1 for
more details). Let F={jt}t ¥ R be a flow on M and m a F-invariant proba-
bility measure. Given a countable partition t of M into measurable sets, we
define

Hm(t)=− C
C ¥ t

m(C) log m(C),

with the convention that 0 log 0=0. The Kolmogorov–Sinai entropy of F

with respect to m or simply the metric entropy of F with respect to m is
given by

hm(F)=sup{hm(F, t): Hm(t) < .},

where

hm(F, t)= lim
n Q .

1
n

Hm(tn),

and tn is the partition of M into the sets C1 5 C2 5 · · · 5 Cn with
Ck ¥ j−kt for k=0,..., n − 1. For example, the metric entropy of a hyper-
bolic flow, or more precisely a C1 flow with a hyperbolic set is upper semi-
continuous. We recall that given a C1 flow F on a manifold M, a compact
F-invariant set X … M is called hyperbolic for the flow F if there exist a
continuous splitting TXM=Es À Eu À E0 and constants c > 0 and l ¥ (0, 1)
such that for each x ¥ X we have:

1. the vector d
dt (jtx)|t=0 generates E0(x);

2. dxjtE s(x)=Es(jtx) and dxjtEu(x)=Eu(jtx) for each t ¥ R;

3. ||dxjtv|| [ cl t ||v|| for every v ¥ E s(x) and t > 0;

4. ||dxj−tv|| [ cl t ||v|| for every v ¥ Eu(x) and t > 0.

For example, geodesic flows on compact Riemannian manifolds with
negative sectional curvature are hyperbolic. Furthermore, time changes and
small C1 perturbations of hyperbolic flows are also hyperbolic flows. More
generally, the metric entropy of an expansive flow is upper semi-continuous.
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On the other hand, one can exhibit plenty transformations without
a hyperbolic set (and not satisfying specification) for which the metric
entropy is still upper semi-continuous. For example, all b-shifts are expan-
sive, and thus the metric entropy is upper semi-continuous (see ref. 12 for
details), but for b in a residual set of full Lebesgue measure (although the
complement has full Hausdorff dimension) the corresponding b-shift does
not satisfy specification (see ref. 18). It follows from work of Walters (19)

that for every b-shift each Lipschitz function has a unique equilibrium
measure. Recall that in the case of topologically mixing hyperbolic flows
each Hölder continuous function has a unique equilibrium measure.

The above discussion motivates the formulation of our results not only
for flows with a hyperbolic set but more generally for flows with upper
semi-continuous metric entropy and potentials with a unique equilibrium
measure. Consider now a continuous flow F={jt}t ¥ R on a compact
metric space X. Given continuous functions a1, a2: X Q R we consider the
level sets of Birkhoff averages

Ka1, a2
=3x ¥ X : lim

t Q .

1
t

F
t

0
a i(js x) ds=a i for i=1, 24 .

We consider the associated entropy spectrum

E(a1, a2)=h(F | Ka1, a2
),

where h(F | Z) denotes the topological entropy of F on the set Z (see
Section 2.1 for the definition). We also consider the set

P=31F
X

a1 dm, F
X

a2 dm2 : m ¥ M4 ,

where M denotes the family of F-invariant probability measures on X. We
can now formulate the variational principle for the spectrum E.

Theorem 1. Assume that the metric entropy m W hm(F) is upper
semi-continuous, and that for each c1, c2 ¥ R the function c1a1+c2a2 has a
unique equilibrium measure. Then for each (a1, a2) ¥ int P we have

E(a1, a2)=max 3hm(F): 1F
X

a1 dm, F
X

a2 dm2=(a1, a2) and m ¥ M4 ,

and there exists an ergodic measure m ¥ M with m(Ka1, a2
)=1 such that

hm(F)=E(a1, a2) and 1F
X

a1 dm, F
X

a2 dm2=(a1, a2).
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Theorem 1 is a particular case of a much more general result in
Theorem 6 later. When F is a hyperbolic flow, the statement in Theorem 1
was established by Barreira and Saussol in ref. 4. It also follows from the
proof of the theorem that

E(a1, a2)=min{PF(q1a1+q2a2) − q1a1 − q2a2 : q1, q2 ¥ R} (3)

for each (a1, a2) ¥ int P, where PF denotes the topological pressure with
respect to the flow F (see Section 2.1 for the definition). In particular, the
functions E and (q1, q2) W PF(q1a1+q2a2) form a Legendre pair.

1.3. Some Applications

The variational principle in Theorem 1 has several nontrivial applica-
tions. Instead of formulating rigorous statements at this point we give
instead a brief description of some of the applications. We refer the reader
to the main text for rigorous statements.

A first application concerns the description of the so-called finer
structure. By considering further continuous functions we can intersect the
level sets Ka1, a2

with each of the level sets associated to the Birkhoff
averages of the new functions. When this is done we obtain a decomposi-
tion of the space X into finer level sets K … Ka1, a2

. We show in Section 4
that under fairly general assumptions the topological entropy of F on
Ka1, a2

is carried by a single set K. This is obtained as a consequence of our
variational principle. The result should be contrasted with the appearance
of ‘‘irregular’’ sets. These are sets of points for which the Birkhoff averages
are not defined. While these sets are rather small from the point of view of
measure theory they can be as large as desired from the point of view of
entropy and dimension (see ref. 14 for a detailed discussion and further
references). As such it is not clear a priori whether the remaining ‘‘regular’’
part has a sufficiently large topological entropy when compared to that
of Ka1, a2

, i.e., it is not clear whether the topological entropy of F on Ka1, a2

is carried by a single set K. It could instead, for example, require a union,
perhaps uncountable, of sets of this type to attain the same topological
entropy. We refer the reader to the introduction to ref. 6 for a related
detailed discussion. The same happens with other global characteristics.
This approach conduced in particular to nontrivial applications in number
theory related to the study of the distribution of frequencies of digits (see
ref. 5).

Another application concerns the study of the regularity of the
spectra. In this case we consider hyperbolic flows, and use the fact that for
Hölder continuous functions a1, a2 the map (q1, q2) W PF(q1a1+q2a2) is
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analytic. We can then use the identity in (3) together with the Implicit
function theorem to deduce the analyticity of the spectrum E. The details
are given in Section 5.2 where we also consider other multifractal spectra.

Still another application concerns the study of how the multifractal
spectra vary under small perturbations. This study intertwines well with
the approach described in the beginning and which looks at multifractal
spectra as certain multifractal moduli, i.e., as quantities that can be used to
recover the dynamics. Namely, it is of interest to understand whether mul-
tifractal spectra indeed vary little under small perturbations, since this
would tells us that small errors would not affect their experimental study.
That this is indeed the case is confirmed in Section 5.3. We also establish
explicit formulas that describe how the spectra vary under perturbations.

Our last application concerns the study of dimension spectra in
Section 6. We continue to consider hyperbolic flows but study Birkhoff
averages taking simultaneously into account the behavior into the future
and into the past. Namely, in the hyperbolic set X, we also consider the
level sets

Mb1, b2
=3x ¥ X : lim

t Q − .

1
t

F
t

0
a i(js x) ds=bi for i=1, 24 .

Using the fact that the stable (respectively unstable) local manifold of a
given point has exactly the same future Birkhoff average (respectively past
Birkhoff average) of that point, the level sets Ka1, a2

5 Mb1, b2
, that take

simultaneously into account the behavior into the future and into the past,
can be shown to possess a local product structure (analogous to that of the
hyperbolic set X). This observation allows us to use the variational prin-
ciple to provide a simple description of the associated dimension spectra.

Our study also allows us to exhibit new nontrivial phenomena absent
in the one-dimensional multifractal analysis. In particular, while the domain
of definition of a one-dimensional spectrum is always an interval, for
higher-dimensional spectra the domain may not be convex and may even
have empty interior, while still containing an uncountable number of
points. Furthermore, the interior of the domain of a higher-dimensional
spectrum has in general more than one connected component. We refer to
ref. 6 for a related discussion.

Our proofs are based on techniques developed by Barreira, Saussol,
and Schmeling in refs. 2, 4, and 6 but require several nontrivial modifica-
tions. We require the thermodynamic formalism for flows (see in particular
the work by Bowen and Ruelle (8)). An advantage of our approach is that
we deal directly with the flows instead of dealing with maps obtained by
replacing the flows with certain associated suspension flows, for example
by means of Markov systems.
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The content of the paper is the following. In Section 2 we recall some
basic notions of the thermodynamic formalism for flows. In Section 3 we
establish the variational principle. We study the finer structure of the
spectra in Section 4. In Section 5 we consider hyperbolic flows, and estab-
lish the analyticity of the spectra and study their variation under small
perturbations. Section 6 is dedicated to the study of the dimension spectra.

2. THERMODYNAMIC FORMALISM FOR FLOWS

2.1. Topological Pressure and Entropy

Let F={jt}t ¥ R be a continuous flow on a compact metric space
(X, d), i.e., a family of transformations jt: X Q X such that jt p js=jt+s

for any t, s ¥ R, and j0x=x for any x ¥ X. Given x ¥ X, t > 0, and e > 0,
we define

Be(x, t)={y ¥ X : d(js y, js x) < e for any s ¥ [0, t]}.

Let a: X Q R be a continuous function and write

a(x, t, e)=sup 3F
t

0
a(js y) ds : y ¥ Be(x, t)4 .

For each set Z … X and a ¥ R, we define

M(Z, a, a, e)= lim
T Q .

inf
C

C
(x, t) ¥ C

exp(a(x, t, e) − at),

where the infimum is taken over all finite or countable sets C={(xi, ti)}i

such that xi ¥ X and ti \ T for each i, and 1i Be(xi, ti) ‡ Z. Then there
exists the limit

PF(a | Z)=lim
e Q 0

inf{a: M(Z, a, a, e)=0}.

The number PF(a | Z) is called the topological pressure of a on Z (with
respect to the flow F). We note that the set Z need not be compact nor
F-invariant (this is crucial in Section 3 since none of sets under considera-
tion will be compact). For simplicity we also write PF(a)=PF(a | X). We
call topological entropy of F on the set Z to the number h(F | Z)=
PF(0 | Z).

We now consider the set MF(X) of F-invariant probability measures
on X. Recall that a measure m on X is F-invariant if m(jtA)=m(A) for any
t ¥ R and any set A … X. With the weak f topology the space MF(X) is
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compact and metrizable. Recall also that a measure m on X is ergodic if for
any F-invariant set A … X (i.e., any set such that jtA=A for every t ¥ R)
we have m(A)=0 or m(X0A)=0.

For each measure m ¥ MF(X) there exists the limit

hm(F)=lim
e Q 0

inf{h(Z, e): m(Z)=1}, (4)

where

h(Z, e)=inf{a: M(Z, 0, a, e)=0}. (5)

Proposition 2. If F is a continuous flow on a compact metric space
and m ¥ MF(X) is ergodic, then hm(F) is the entropy of F with respect to m,
i.e., the entropy of j1 with respect to m.

In the case of ergodic measures, we can thus use (4) and (5) to
compute the entropy. An analogous result was established by Pesin in
ref. 14, Theorem 11.6 in the discrete-time case. The proof of Proposition 2
is a simple modification of the proof of that statement and hence it is not
reproduced here.

2.2. BS-Dimension

We now recall a Carathéodory characteristic introduced by Barreira
and Saussol in ref. 3. It is a generalization of the topological entropy, and
is a version of the Carathéodory characteristic introduced by Barreira and
Schmeling in ref. 7 in the discrete-time case.

Let F be a continuous flow on a compact metric space X and
u: X Q R a positive continuous function. For each set Z … X and a ¥ R, we
define

N(Z, u, a, e)= lim
T Q .

inf
C

C
(x, t) ¥ C

exp(−au(x, t, e)),

where the infimum is taken over all finite or countable sets C={(xi, ti)}i

such that xi ¥ X and ti \ T for each i, and 1i Be(xi, ti) ‡ Z. Setting

dim u, e Z=inf{a: N(Z, u, a, e)=0},

there exists the limit

dim u Z=lim
e Q 0

dim u, e Z.
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Following Pesin, (14) the number dim u Z is called the BS-dimension of Z
(with respect to u). When u=1 we have dim u Z=h(F | Z).

It follows easily from the definitions that the topological pressure and
the BS-dimension are related in the following manner.

Proposition 3. The unique root of PF(−au | Z)=0 is a=dim u Z.

For each probability Borel measure m on X, let

dim u, e m=inf{dim u, e Z: m(Z)=1}.

Then there exists the limit

dim u m=lim
e Q 0

dim u, e m.

The number dim u m is called the BS-dimension of m (with respect to u). For
each ergodic measure m ¥ MF(X) we have dim u m=hm(F)/>X u dm. The
proof of this identity can be obtained in an analogous manner to that in
the discrete-time case in ref. 7.

2.3. Properties of the Pressure

We recall here some of the basic properties of the topological pressure.
See refs. 12, 17, and 20 for full details.

Proposition 4. If F is a continuous flow on a compact metric space
X and a: X Q R is a continuous function, then

PF(a)=sup 3hm(F)+F
X

a dm : m ¥ MF(X)4 . (6)

A measure m ¥ MF(X) is called an equilibrium measure for the function
a (with respect to the flow F) if the supremum in (6) is attained at this
measure, i.e., if PF(a)=hm(F)+>X a dm. We denote by C(X) the space of
continuous functions a: X Q R equipped with the supremum norm and by
D(X) … C(X) the family of continuous functions with a unique equilibrium
measure. For a finite set K … C(X) we denote by span K … C(X) the linear
space generated by the functions in K.

Proposition 5. If F is a continuous flow on a compact metric space
X such that m W hm(F) is upper semi-continuous, then:
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1. each a ¥ C(X) has equilibrium measures, and D(X) is dense in
C(X);

2. given a, b ¥ C(X), the map R ¦ t W PF(a+tb) is differentiable at
t=0 if and only if a ¥ D(X), in which case the unique equilibrium measure
ma of a is ergodic and satisfies

d
dt

PF(a+tb)|t=0=F
X

b dma; (7)

3. if span{a, b} … D(X) then the function t W PF(a+tb) is of class C1.

A flow F on a metric space X is expansive if there exists e > 0 such
that given x, y ¥ X and a continuous function s: R Q R with s(0)=0
satisfying

d(jtx, js(t)x) < e and d(jtx, js(t) y) < e

for every t ¥ R, we must have x=y. If F is an expansive flow then the
entropy is upper semi-continuous (see ref. 20).

We say that a function a: X Q R is F-cohomologous to a function
b: X Q R if there exists a bounded measurable function q: X Q R such that

a(x) − b(x)=lim
t Q 0

q(jtx) − q(x)
t

.

In this case PF(a | X)=PF(b | X).

3. MULTIFRACTAL ANALYSIS

We introduce in this section a multifractal spectrum for ratios of
Birkhoff averages of a given flow. We then establish a variational principle
for this spectrum.

3.1. Conditional Variational Principle

Let again F={jt}t ¥ R be a continuous flow on the compact metric
space X. We consider d ¥ N and vectors (A, B) ¥ C(X)d × C(X)d,

A=(a1,..., ad) and B=(b1,..., bd),

with B > 0 (i.e., with bi > 0 for i=1,..., d). We equip Rd with the norm
||a||=|a1 |+ · · · +|ad | and C(X)d with the corresponding induced norm.
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Given a=(a1,..., ad) ¥ Rd we define

Ka=Ka(A, B)=3
d

i=1

3x ¥ X : lim
t Q .

> t
0 a i(js x) ds

> t
0 bi(js x) ds

=a i
4 . (8)

Let u: X Q R be a positive continuous function. We define the BS-dimen-
sion spectrum Fu: Rd

Q R of (A, B) (with respect to u and F) by

Fu(a)=dim u Ka(A, B).

We also consider the function P=PA, B: MF(X) Q Rd given by

PA, B(m)=1 >X a1 dm

>X b1 dm
,...,

>X ad dm

>X bd dm
2 . (9)

Given a=(a1,..., ad) ¥ Rd and b=(b1,..., bd) ¥ Rd we write

a f b=(a1b1,..., adbd) ¥ Rd and Oa, bP= C
d

i=1
a ibi ¥ R.

Theorem 6. Let F be a continuous flow on a compact metric space
X such that m W hm(F) is upper semi-continuous, and consider functions
(A, B) ¥ C(X)d × C(X)d with B > 0 and u ¥ C(X) with u > 0 such that

span{a1, b1,..., ad, bd, u} … D(X).

If a ¥ int P(MF(X)) then Ka ] ” and the following properties hold:

1. Fu(a) satisfies the variational principle

Fu(a)=max 3 hm(F)
>X u dm

: m ¥ MF(X) and P(m)=a4 ; (10)

2. Fu(a)=min{Tu(a, q): q ¥ Rd}, where Tu(a, q) is the unique number
satisfying

PF(Oq, A − a f BP− Tu(a, q) u)=0; (11)

3. there exists an ergodic measure ma ¥ MF(X) such that P(ma)=a,
ma(Ka)=1, and dim u ma=Fu(a).

Furthermore, if a ¨ P(MF(X)) then Ka=”.

1578 Barreira and Doutor



The proof of Theorem 6 is given in Section 3.2. When F is a hyper-
bolic flow, the statement in Theorem 6 was established by Barreira and
Saussol in ref. 4 in the case of the entropy (i.e., when u=1). More preci-
sely, the authors include a complete proof when d=1 and describe the
required changes for an arbitrary d.

It also follows from the proof of Theorem 6 that ma can be chosen
to be an equilibrium measure of the function Oq(a), A − a f BP−Fu(a) u,
where q(a) ¥ Rd is any number such that

PF(Oq(a), A − a f BP−Fu(a) u)=0.

We note that q(a) is not necessarily unique and thus ma may also not be
unique. The function Tu is implicitly defined by (11) and thus, by Propo-
sition 5, the function (p, a, q) W PF(Oq, A − a f BP− pu) is of class C1.
Furthermore,

“

“p
PF(Oq, A − a f BP− pu):

(p, q)=(Tu(a, q), q)
=−F

X
u dmq < 0,

where mq is the equilibrium measure of Oq, A − a f BP− Tu(a, q) u. It then
follows from the Implicit function theorem that Tu is of class C1 in Rd × Rd.
Hence, for each a the minimum in statement 2 of Theorem 6 is attained at
a point q ¥ Rd such that “qTu(a, q)=0.

We now consider the particular case when there is a cohomology rela-
tion between u and B. Namely, let c=(c1,..., cd) ¥ Rd be such that bi is
F-cohomologous to c iu for i=1,..., d. Then the number Tu(a, q) satisfying
(11) is equivalently defined by requiring that

PF(Oq, AP− [Oq, a f cP+Tu(a, q)] u)=0. (12)

By statement 2 of Theorem 6 we obtain

Fu(a)=min{Qu(q) −Oq, a f cP : q ¥ Rd},

where Qu(q)=Oq, a f cP+Tu(a, q). By (12) the function Qu is well-defined
(the right-hand side does not depend on a). Since the minimum is obtained
at a point q ¥ Rd satisfying “qTu(a, q)=0, setting c−1=(c−1

1 ,..., c−1
d ) we

obtain a=c−1 f “qQu(q).

3.2. Proof of Theorem 6

The proof follows arguments of Barreira, Saussol, and Schmeling in
ref. 6 in the context of discrete-time. For simplicity we use the notation
m(k)=>X k dm.
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Consider a ¥ Rd such that Ka ] ”. We choose x ¥ Ka and define a
sequence (mn)n ¥ N of probability measures on X by mn(a)=1

n >n
0 a(js x) ds

for every a ¥ C(X). Since MF(X) is compact, this sequence has at least one
accumulation point m ¥ MF(X) and

a=1 lim
t Q+.

> t
0 a1(js x) ds

> t
0 b1(js x) ds

,..., lim
t Q+.

> t
0 ad(js x) ds

> t
0 bd(js x) ds

2

=1 lim
n Q+.

mn(a1)
mn(b1)

,..., lim
n Q+.

mn(ad)
mn(bd)

2

=1m(a1)
m(b1)

,...,
m(ad)
m(bd)

2=P(m) ¥ P(MF(X)).

Let now a ¥ int P(MF(X)). The existence of the maximum in (10) is a
consequence of the upper semi-continuity of m W hm(F)/>X u dm, the com-
pactness of MF(X), and the continuity of P. For each q ¥ Rd we write

jq, a=Oq, A − a f BP−Fu(a) u and Fa(q)=PF(jq, a).

Let r > 0 be the distance from a to Rd 0P(MF(X)) and choose q such that

||q|| \
dim u X · sup u+Fa(0)

r min i inf bi
=R.

If l ¥ (0, 1) and b=(b1,..., bd) ¥ Rd with bi=a i+
1
d lr sgn qi, then

||b − a||= C
d

i=1
|bi − a i |= C

d

i=1

1
d

lr sgn |qi |=lr < r.

Hence b ¥ P(MF(X)) and there is m ¥ MF(X) such that m(A − b f B)=0.
We obtain

Oq, m(A − a f B)P=Oq, m((b − a) f B)P

= C
d

i=1
qi m((bi − a i) f bi)= C

d

i=1

1
d

lrqi sgn qi F
X

bi dm

=
1
d

lr C
d

i=1
|qi | F

X
bi dm \ lr ||q|| min

i
inf bi.
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By Proposition 4 and since hm(F) \ 0 we have

Fa(q) \ hm(F)+m(jq, a)=hm(F)+Oq, m(A − a f B)P−Fu(a) m(u)

\ ||q|| lr min
i

inf bi − dim u X · sup u

\ l[dim u X · sup u+Fa(0)] − dim u X · sup u.

Since l ¥ (0, 1) is arbitrary, taking l Q 1 we conclude that Fa(q) \ Fa(0)
for every q ¥ Rd such that ||q|| \ R. By Proposition 5 the function F is of
class C1 and hence it reaches a minimum at a point q=q(a) with
||q(a)|| [ R, satisfying “qFa(q(a))=0. By (7),

ma(A − a f B)=“qFa(q(a))=0,

where ma is the equilibrium measure of jq, a. Thus, P(ma)=a. Moreover,

Fa(q(a))=hma
(F) −Fu(a) F

X
u dma. (13)

Let now x ¥ Ka. For i=1,..., d, we have

lim
t Q .

> t
0 a i(js x) ds

> t
0 bi(js x) ds

=a i.

Since bi > 0, taking d > 0 there exists y such that, for all t > y,

:>
t
0 a i(js x) ds

> t
0 bi(js x) ds

− a i
: < d

dM
,

where M=max i ¥ {1,..., d} maxx ¥ X bi(x). We define At(x)=> t
0 A(js x) ds and

Bt(x)=> t
0 B(js x) ds, and let

Ld, y={x ¥ X : ||At(x) − a f Bt(x)|| < dt for all t \ y}.

We obtain

||At(x) − a f Bt(x)||= C
d

i=1

:F t

0
a i(js x) ds − a i F

t

0
bi(js x) ds:

<
d

dM
C
d

i=1
F

t

0
bi(js x) ds < dt,

and hence x ¥ Ld, y ı 1y ¥ R Ld, y for any d > 0. Thus Ka ı 4d > 0 1y ¥ R Ld, y.
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Since X is compact each function a i is uniformly continuous. Hence,
there exists e > 0 such that, whenever (x, t) ¥ X × [0, .), if y, z ¥ Be(x, t)
(and, thus d(js y, jsz) < 2e) then |a i(jsz) − a i(js y)| < d/d, for all 0 [ s [ t.
Consider

A(x, t, e)=(a1(x, t, e),..., ad(x, t, e))

and take y ¥ Be(x, t). We obtain

||A(x, t, e) − At(y)||= C
d

i=1

:a i(x, t, e) − F
t

0
a i(js y) ds :

[ d sup 3F
t

0
|a i(jsz) − a i(js y)| ds : z ¥ Be(x, t)4

[ d sup 3F
t

0

d

d
ds : z ¥ Be(x, t)4 [ dt,

and analogously, ||B(x, t, e) − Bt(y)|| [ dt.
Take q ¥ Rd. Given (x, t) ¥ X × [y, .) such that Be(x, t) 5 Ld, y ] ”

and y ¥ Be(x, t) 5 Ld, y, we have

−Oq, A − a f BP(x, t, e)

[ |Oq, A − a f BP(x, t, e)|

[ ||q|| · ||A(x, t, e) − a f B(x, t, e)||

[ ||q|| · ||A(x, t, e) − At(y)||+||q|| · ||a f Bt(y) − a f B(x, t, e)||

+||q|| · ||At(y) − a f Bt(y)||

[ ||q|| (dt+||a|| dt+dt)=c dt,

where c=(2+||a||) ||q||. Hence,

exp(−Fu(a) u(x, t, e) − bt)=exp(jq, a(x, t, e) −Oq, A − a f BP(x, t, e) − bt)

[ exp(jq, a(x, t, e) − (b − cd) t)

for all b ¥ R. Let T \ y and consider a finite or countable family C=
{(xi, ti)}i where xi ¥ X and ti \ T for each i, Ld, y … 1i Be(xi, ti), and there
exists no (xi, ti) such that Be(xi, ti) 5 Ld, y=”. Then

C
(x, t) ¥ C

exp(−Fu(a) u(x, t, e) − bt) [ C
(x, t) ¥ C

exp(jq, a(x, t, e) − (b − cd) t).
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Taking the infimum over C, and letting T Q . we obtain

M(Ld, y, −Fu(a) u, b, e) [ M(Ld, y, jq, a, b − cd, e).

Letting e Q 0 yields PF(−Fu(a) u | Ld, y) [ PF(jq, a | Ld, y)+cd for every d > 0
and q ¥ Rd. By Proposition 3 and the properties of the topological pressure,

0=PF(−Fu(a) u | Ka) [ PF
1−Fu(a) u : 0

y ¥ R

Ld, y
2

=sup
y > 0

PF( −Fu(a) u | Ld, y) [ PF(jq, a | Ld, y)+cd [ Fa(q)+cd

for every d > 0 and q ¥ Rd. Since d is arbitrary, we obtain Fa(q) \ 0. By
Proposition 5 and (13), the measure ma is ergodic and

dim u ma=
hma

(F)

>X u dma

\ Fu(a).

Since ma(A − a f B)=0, Birkhoff ’s ergodic theorem shows that ma(Ka)=1.
This implies that

Fu(a)=dim u Ka=lim
e Q 0

dim u, e Ka \ lim
e Q 0

dim u, e ma=dim u ma,

and hence dim u ma=Fu(a). Therefore

min{Fa(q): q ¥ Rd}=Fa(q(a))=hma
(F) −Fu(a) F

X
u dma

=hma
(F) −

hma
(F)

>X u dma

F
X

u dma=0.

Take m ¥ MF(X) such that P(m)=a. Then m(Oq, A − a f BP)=0 and by
Proposition 4,

0=min{Fa(q): q ¥ Rd} \ inf
q ¥ R

d
{hm(F)+m(Oq, A − a f BP−Fu(a) u)}

\ inf
q ¥ R

d
3hm(F) −Fu(a) F

X
u dm4=hm(F) −Fu(a) F

X
u dm.

Therefore hm(F)/>X u dm [ Fu(a), with equality when m=ma. This
establishes statements 1 and 3 of the theorem.
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Furthermore, since Fa(q(a))=0,

Fu(a)=Tu(a, q(a)) \ inf{Tu(a, q): q ¥ Rd}.

On the other hand,

Fa(q) \ 0=PF(Oq, A − a f BP− Tu(a, q) u),

and hence Fu(a) [ inf{Tu(a, q): q ¥ Rd}. This establishes statement 2 and
the proof of the theorem is completed.

4. FINER STRUCTURE

We now study in even greater detail the structure of the level sets Ka

(see (8)). A related study was effected by Barreira, Saussol, and Schmeling
in ref. 6 in the discrete-time case.

Let F be a continuous flow on a compact metric space X. Let d ¥ N
and A, B ¥ C(X)d (we no longer assume that B > 0). Let also u ¥ C(X) be a
positive function, and consider the vector U=(u,..., u) ¥ C(X)d. We define
at(x)=> t

0 a(js x) ds for each a ¥ C(X), and let F: D … Rd × Rd
Q Rd be a

continuous function. We assume that

1At(x)
ut(x)

,
Bt(x)
ut(x)

2 ¥ D (14)

for every t ¥ R and x ¥ X. We also consider the sets

LF
a =3x ¥ X : lim

t Q .

F 1At(x)
ut(x)

,
Bt(x)
ut(x)

2=a4

for each a ¥ Rd. When F(X, Y)=X f Y−1 this coincides with the set Ka

in (8). We also consider the associated multifractal spectrum Gu defined by
Gu(a)=dim u LF

a for each a ¥ Rd.
We want to establish a relation between the BS-dimension of a given

set LF
a (with respect to u) and the BS-dimension of the sets

Kb, c=3x ¥ X : lim
t Q .

1At(x)
ut(x)

,
Bt(x)
ut(x)

2=(b, c)4 ,

with b, c ¥ Rd. These new sets are of the same type of those in (8) but now
corresponding to a parameter (b, c) of dimension 2d and to vectors of
functions (A, B), (U, U) ¥ C(X)2d. We write

Hu(b, c)=dim u Kb, c.
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Given q ¥ R2d, let Su(q) be the unique number satisfying

PF(Oq, (A, B)P− Su(q) u)=0

and let mq be an equilibrium measure of Oq, (A, B)P− Su(q) u (this measure
will be unique in our context).

By Theorem 6 applied to the 2d-dimensional spectrum Hu (see also the
discussion after Theorem 6), we obtain the following.

Theorem 7. Let F be a continuous flow on a compact metric space
X such that m W hm(F) is upper semi-continuous. If span{a1, b1,..., ad, bd, u}
… D(X), then

Hu(“qSu(q))=Su(q) −Oq, “qSu(q)P

and mq(K“qSu(q))=1 for every q ¥ R2d.

Observe that Hu and Su form a Legendre pair.

Proposition 8. Let F be a continuous flow on a compact metric
space X and F: D … Rd × Rd

Q Rd a continuous function such that (14)
holds for every t ¥ R and x ¥ X. Then

Gu(a) \ sup{Hu(b, c): (b, c) ¥ F−1(a)} (15)

for every a ¥ F(D).

Proof. Take (b, c) ¥ D and x ¥ Kb, c. By the continuity of F,

lim
t Q .

F 1At(x)
ut(x)

,
Bt(x)
ut(x)

2=F 1 lim
t Q .

At(x)
ut(x)

, lim
t Q .

Bt(x)
ut(x)

2=F(b, c).

This implies that

0
(b, c) ¥ F − 1(a)

Kb, c ı LF
a .

Since Kb, c … LF
a for every (b, c) ¥ F−1(a), we have dim u Kb, c [ dim u LF

a .
This completes the proof. L

When F is chosen in such a way that LF
a is of the form Ka(G, H) for

some vectors G, H ¥ C(X)d, we can apply Theorem 6 and explicitly deter-
mine a point (b, c) ¥ F−1(a) such that Gu(a)=Hu(b, c).
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Example 1. Consider vectors A, B ¥ C(X)d and constants c i ¥ Rd

for i ¥ {1,..., 6}, such that c4 f A(x)+c5 f B(x)+c6 ] 0 for every x ¥ X. We
define a function F: Rd × Rd

Q Rd by

F(X, Y)=(c1 f X+c2 f Y+c3) f (c4 f X+c5 f Y+c6)−1.

Since

F 1At(x)
ut(x)

,
Bt(x)
ut(x)

2=(c1 f A+c2 f B+c3)t (x) f (c4 f A+c5 f B+c6)−1
t (x)

for every t ¥ R and x ¥ X, we have LF
a =Ka(G, H), where

G=c1 f A+c2 f B+c3=(g1,..., gd),

H=c4 f A+c5 f B+c6=(h1,..., hd).

Hence, defining P=PG, H: MF(X) Q Rd by

PG, H(m)=1 >X g1 dm

>X h1 dm
,...,

>X gd dm

>X hd dm
2 ,

it follows from Theorem 6 that for each a ¥ int P(MF(X)) there exists
an ergodic measure ma such that dim u ma=dim u LF

a , ma(LF
a )=1, and

P(ma)=a. By Birkhoff ’s ergodic theorem and the ergodicity of ma we
conclude that there exist the limits

lim
t Q .

> t
0 A(js x) ds

> t
0 u(js x) ds

=b(a)=
>X A dma

>X u dma

,

lim
t Q .

> t
0 B(js x) ds

> t
0 u(js x) ds

=c(a)=
>X B dma

>X u dma

ma-almost everywhere. Therefore ma(Kb(a), c(a))=1 and

dim u Kb(a), c(a) \ dim u ma=dim u LF
a . (16)

Furthermore, since P(ma)=a,

1 >X g1 dma

>X h1 dma

,...,
>X gd dma

>X hd dma

2=a.
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On the other hand, again by Birkhoff ’s ergodic theorem,

1 >X g1 dma

>X h1 dma

,...,
>X gd dma

>X hd dma

2=lim
t Q .

1 > t
0 g1(js x) ds

> t
0 h1(js x) ds

,...,
> t

0 gd(js x) ds
> t

0 hd(js x) ds
2

=lim
t Q .

F 1 > t
0 A(js x) ds

> t
0 u(js x) ds

,
> t

0 B(js x) ds
> t

0 u(js x) ds
2

=F 1 lim
t Q .

> t
0 A(js x) ds

> t
0 u(js x) ds

, lim
t Q .

> t
0 B(js x) ds

> t
0 u(js x) ds

2

=F(b(a), c(a)).

We have F(b(a), c(a))=a. Using (15) and (16) we conclude that there
exists (b, c) ¥ F−1(a) such that Gu(a)=Hu(b, c). Therefore,

Gu(a)=max{Hu(b, c): (b, c) ¥ F−1(a)}.

Theorem 17 in ref. 6 is a particular case of this example (in the discrete-
time case) with F(X, Y)=X f Y−1. In this situation LF

a =Ka(A, B).

5. HYPERBOLIC FLOWS

5.1. Basic Notions

Consider a C1 flow F={jt}t ¥ R on a manifold M and a compact
F-invariant hyperbolic set L … M (see Section 1.2 for the definition). The
set L is called locally maximal if it has an open neighborhood U such that
L=4t ¥ R jt(U). The flow F | L is called topologically mixing if for any two
nonempty open sets U and V intersecting L, there exists t ¥ R such that
js(U) 5 V 5 L ] ” for all s > t.

In the case of a hyperbolic set, Proposition 5 can be strengthen in the
following manner.

Proposition 9. For a C1 flow F={jt}t ¥ R on a compact manifold
with a locally maximal hyperbolic set L such that F | L is topologically
mixing we have:

1. the function m W hm(F) is upper semi-continuous on MF(L);

2. each Hölder continuous function a: L Q R has a unique equilib-
rium measure;
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3. given Hölder continuous functions a, b: L Q R the function R ¦ t
W PF(a+tb) is analytic, and for each t ¥ R we have

d2

dt2 PF(a+tb) \ 0, (17)

with equality if and only if b is F-cohomologous to a constant.

As a consequence of Proposition 9, the variational principle in
Theorem 6 applies in particular to a topologically mixing flow on a locally
maximal hyperbolic set.

5.2. Regularity of the Spectrum

The study of the regularity of the multifractal spectrum Fu is based on
statement 2 of Theorem 6 which states that the spectrum is equal to the
minimum of a certain function defined implicitly in terms of the topologi-
cal pressure. Since t W PF(a+tb) is analytic when a, b: L Q R are Hölder
continuous functions, we can then use the Implicit function theorem to
establish the analyticity of the spectrum.

Theorem 10. Let F be a C1 flow with a compact locally maximal
hyperbolic set L such that F | L is topologically mixing. If the functions
a i, bi: L Q R for i=1,..., d and u: L Q R are Hölder continuous, then Fu is
analytic on int P(MF(X)).

Proof. By Proposition 9, the function m W hm(F) is upper semi-con-
tinuous on MF(L). Theorem 6 shows that Fu(a)=min{Tu(a, q): q ¥ Rd},
where Tu(a, q) is the unique number satisfying (11). Hence

0=“qPF(Oq, A − a f BP− Tu(a, q) u)

=“qPF(Oq, A − a f BP− pu)|p=Tu(a, q)

+“pPF(Oq, A − a f BP− pu)|p=Tu(a, q) “qTu(a, q).

Consider now q(a) ¥ Rd such that Fu(a)=Tu(a, q(a)). Since Tu is of class
C1 (see the discussion after Theorem 6), we have “qTu(a, q(a))=0 and
thus,

“qPF(Oq, A − a f BP− pu)=0,
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with q=q(a) and p=Tu(a, q(a)). Hence, (a, q, p)=(a, q(a), Fu(a)) is a
solution of the system

˛PF(Oq, A − a f BP− pu)=0

“qPF(Oq, A − a f BP− pu)=0.
(18)

By Proposition 9 the function t W PF(a+tb) is analytic. We want to
show that

det 1“[PF(Oq, A − a f BP− pu), “qPF(Oq, A − a f BP− pu)]
“(q, p)

2 ] 0 (19)

for (a, q, p)=(a, q(a), Fu(a)). The first line of the matrix in (19) is

1“q(PF(Oq, A − a f BP− pu)), −F
L

u dma
2 ,

where ma ¥ MF(L) is the equilibrium measure of Oq(a), A − a f BP
−Fu(a) u. Considering the d last equations of the system (18), all the values
of the first line vanish at (a, q(a), Fu(a)) except for the last one which is
negative.

Therefore, the determinant in (19) will be nonzero provided that

det[“
2
qPF(Oq, A − a f BP− pu)] ] 0 (20)

with (a, q, p)=(a, q(a), Fu(a)). We now establish a result analogous
to (17).

Lemma 1. Let F be a C1 flow with a compact locally maximal
hyperbolic set L such that F | L is topologically mixing. If the functions
a i, bi: L Q R for i=1,..., d and u: L Q R are Hölder continuous, then the
matrix

“
2
qPF(Oq, A − a f BP− pu) (21)

is positive definite for every q ¥ Rd, p ¥ R, and a ¥ int P(MF(L)).

Proof of Lemma 1. If the determinant of the matrix (21) is zero,
then there exists v ¥ Rd 0{0} such that

v t
“

2
qPF(Oq, A − a f BP− pu) v=0,
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where v t denotes the transpose of v. Then

“
2
t PF(Oq − tv, A − a f BP− pu)|t=0=0

and by statement 3 of Proposition 9, Ov, A − a f BP is F-cohomologous to a
constant c. In particular,

F
L

Ov, A − a f BP dm=7F
L

A dm − a f F
L

B dm8=cm(L)

for every m ¥ MF(L). Since a ¥ P(MF(L)), this implies that c=0. We
conclude that Ov, A − a f BP is F-cohomologous to 0 and thus,

PF(0)=PF(tOv, A − a f BP) for every t ¥ R.

Since a ¥ int P(MF(L)), there exists s ] 0 such that sv+a ¥ P(MF(L))
and there exists a measure ms ¥ MF(L) satisfying

F
L

A dms=F
L

(sv+a) f B dms.

For every t ¥ R, we obtain

PF(0)=PF(tOsv, A − a f BP)

\ hms
(F)+t 7sv, (sv+a − a) f F

L

B dms
8

\ ts2 |v|2 inf
i ¥ {1,..., d}

inf bi,

which is impossible ( let t Q .). We conclude that the matrix (21) has
nonzero determinant. We now show that it is positive definite. By the
continuity of

v W v t
“

2
qPF(Oq, A − a f BP− pu) v,

if we had vectors v=(v1,..., vd) and w=(w1,..., wd) ¥ Rd 0{0} satisfying

v t
“

2
qPF(Oq, A − a f BP− pu) v < 0 and w t

“
2
qPF(Oq, A − a f BP− pu) w > 0,

we could find t1,..., td ¥ (0, 1) such that

x=(t1v1+(1 − t1) w1,..., tdvd+(1 − td) wd) ] 0
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and

x t
“

2
qPF(Oq, A − a f BP− pu) x=0.

But as shown above this is impossible. Therefore, the matrix (21) is either
positive definite or negative definite.

Denote by e1 the first element of the canonical base of Rd. By state-
ment 3 of Proposition 9,

e t
1 “

2
qPF(Oq, A − a f BP− pu) e1=

“
2

“q2
1

PF(Oq, A − a f BP− pu) \ 0

and we conclude that the matrix in (21) is positive definite. L

Lemma 20 shows that (20) holds. Consequently the system (18) defines
q and p as functions of a in a neighborhood of (a, q(a), Fu(a)). In particu-
lar, we conclude that the spectrum Fu is analytic on int P(MF(L)). L

5.3. Variational Properties

We now study how the spectrum Fu varies when the vectors A, B and
the function u are perturbed. The results obtained here are consequences of
the Conditional variational principle and of Theorem 10. We use a similar
approach to that of Barreira in ref. 2.

Consider a C1 flow F={jt}t ¥ R on a manifold M and L a compact
locally maximal hyperbolic set for F such that F | L is topologically mixing.

Let C e(L) be the space of the Hölder continuous functions a: L Q R
with Hölder exponent e. We define the norm of a function a ¥ C e(L) by

||a||e=sup{|a(x)|: x ¥ L}+sup 3 |a(x) − a(y)|
d(x, y) e

: x, y ¥ L and x ] y4 .

Consider a family of functions a: L × (−d, d) Q R in C e(L), d > 0. We
write a(g) when we refer to the function in this family corresponding to a
specific value g ¥ (d, d). We say that a is a Ck-family if the map (−d, d) ¦

g W a(g) ¥ C e(L) is of class Ck.
Consider now two vectors

A: L × (−d, d) Q Rd and B: L × (−d, d) Q Rd

in (C e(L))d whose coordinates are Ck-families defined for g ¥ (−d, d). We
write A(g) when we want to refer to the vector corresponding to a specific
value g ¥ (d, d). Consider also a Ck-family u defined for g ¥ (−d, d).
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Given q ¥ Rd, let Tu(a, q, g) be the unique real number such that

PF(Oq, A(g) − a f B(g)P− Tu(a, q, g) u(g))=0. (22)

We denote by mq, g the unique equilibrium measure of

Oq, A(g) − a f B(g)P− Tu(a, q, g) u(g).

Theorem 11. Consider a C1 flow F={jt}t ¥ R, L a compact locally
maximal hyperbolic set for F such that F | L is topologically mixing, A and
B two vectors of (C e(L))d whose coordinates are Ck-families and u a
Ck-family in C e(L) such that u(0) > 0 (for some k \ 1). Then the function
(a, q, g) W Tu(a, q, g) is of class Ck in g and analytic in a and q in a neigh-
borhood of g=0, with

“Tu

“g
:
(a, q, g)=(a, q, 0)

=
Oq, >L z dmq, 0P− Tu(a, q, 0) >L

du
dg

|g=0 dmq, 0

>L u(0) dmq, 0

(23)

for every q ¥ Rd, where

z=
dA
dg

:
g=0

− a f
dB
dg

:
g=0

.

Proof. Consider the equation

PF(Oq, A − a f BP− pu)=0. (24)

By the definition of Tu(a, q, 0), the vector

(p, a, q, g)=(Tu(a, q, 0), a, q, 0)

is a solution of (24). Furthermore, the first member of (24) is of class Ck in
g and analytic in p, a, and q. Since

“

“p
PF(Oq, A − a f BP− pu):

(p, a, q, g)=(Tu(a, q, 0), a, q, 0)
=−F

L

u(0) dmq, 0 < 0,

we conclude that (24) implicitly defines p as function of a, q, and g in a
neighborhood of (Tu(a, q, 0), a, q, 0). We obtain a function Tu: (−dŒ, dŒ) ×
Rd

Q R with the desired regularity, for some dŒ ¥ (0, d].
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Consider now the Taylor expansion around g=0,

Oq, A(g) − a f B(g)P− Tu(a, q, g) u(g)

=Oq, A(0) − a f B(0)P− Tu(a, q, 0) u(0)+7q,
dA
dg

:
g=0

− a f
dB
dg

:
g=0

8 g

−
“Tu

“g
:
g=0

u(0) g − Tu(a, q, 0)
du
dg
:
g=0

g+o(g).

By (22), we have

0=
“

“g
PF(Oq, A(g) − a f B(g)P− Tu(a, q, g) u(g)):

g=0

=F
L

17q,
dA
dg

:
g=0

− a f
dB
dg

:
g=0

8− Tu(a, q, 0)
du
dg
:
g=0

2 dmq, 0

−
“Tu

“g
:
g=0

F
L

u(0) dmq, 0.

This establishes (23). L

The following theorem describes how the spectrum Fu=Fu(a, g)
changes when g varies.

Theorem 12. Consider a C1 flow F={jt}t ¥ R, L a compact locally
maximal hyperbolic set for F such that F | L is topologically mixing, A and
B two vectors of (C e(L))d whose coordinates are Ck-families and u a
Ck-family in C e(L) such that u(0) > 0 (for some k \ 1). Then

1. the spectrum Fu is of class Ck in g in a neighborhood of g=0 and
analytic in a on int P(MF(L));

2. if for each i ¥ {1,..., d} and g ¥ (−d, d) the function bi(g) is
F-cohomologous to c i(g) u(g), with c=(c1,..., cd): (−d, d) Q Rd of class
Ck on g and independent of x ¥ L, we have

“Fu

“g
:
(a, g)=(c(0) − 1 f “qQu(q, 0), 0)

=
Oq, >L t dmq, 0P− Qu(q, 0) >L

du
dg

|g=0 dmq, 0

>L u(0) dmq, 0

, (25)

for every q ¥ Rd, where Qu(q, g) is the unique number satisfying

PF(Oq, A(g)P− Qu(q, g) u(g))=0,
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and where

t=
dA
dg

:
g=0

− c(0)−1 f “qQu(q, 0) f
dB
dg

:
g=0

+“qQu(q, 0)
du
dg
:
g=0

.

Proof. To prove the first statement we consider the system

˛PF(Oq, A − a f BP− pu)=0

“qPF(Oq, A − a f BP− pu)=0.
(26)

Using a similar approach to that in the proof of Theorem 10, and applying
the Implicit function theorem around (p, a, q, g)=(Fu(a, 0), a, q(a), 0), we
conclude that the spectrum Fu possesses the desired regularity.

We consider the identity

“qQu(q, g)=a f c(g)+“qTu(a, q, g). (27)

Taking derivatives with respect to q, we obtain “
2
qQu(q, g)=“

2
qTu(a, q, g).

Hence,

det “
2
q(c(g)−1 f “qQu(q, g))=c1(g)−1 · · · cd(g)−1 det “

2
qQu(q, g)

=c1(g)−1 · · · cd(g)−1 det “
2
qTu(a, q, g). (28)

Let now g ¥ (−d, d). By (22) we have

0=“qPF(Oq, A(g) − a f B(g)P− Tu(a, q, g) u(g))

=“qPF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g)

+“pPF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g) “qTu(a, q, g).

This allow us to conclude that

“qTu(a, q, g)=
“qPF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g)

>L u(g) dmq, g

. (29)

The ith component of “qTu(a, q, g) is

(“qTu(a, q, g))i=
“

“qi
PF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g)

>L u(g) dmq, g

.

1594 Barreira and Doutor



Considering j ¥ {1,..., d} and taking derivatives with respect to qj, we
obtain

“

“qj
(“qTu(a, q, g))i

=
“

2

“qj “qi
PF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g)

>L u(g) dmq, g

+
“

2

“p “qi
PF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g)

“

“qj
Tu(a, q, g)

>L u(g) dmq, g

−
“

“qi
PF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g)

“

“qj
>L u(g) dmq, g

(>L u(g) dmq, g)2 . (30)

By the discussion at the end of Section 3.1, we have

Fu(c(g)−1 f “qQu(q, g), g)=Qu(q, g) −Oq, “qQu(q, g)P, (31)

where q satisfies “qTu(a, q, g)=0. By (29),

“qPF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g)=0,

and (30) simplifies to give

“
2

“qj “qi
PF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g)

>L u(g) dmq, g

.

Thus det “
2
qTu(a, q, g) equals

1 1
>L u(g) dmq, g

2d

det “
2
qPF(Oq, A(g) − a f B(g)P− pu(g))|p=Tu(a, q, g).

By Lemma 1, we obtain det “
2
qTu(a, q, g) ] 0. Using (28), we conclude that

det “
2
q(c(g)−1 f “qQu(q, g)) ] 0.

Thus c−1 f “qQu is locally invertible, and hence, given q ¥ Rd and a=
c(g)−1 f “qQu(q, g) (see the end of Section 3.1), there exists a family of
functions G: Rd × (−d, d) Q Rd, depending on g, such that

c(g)−1 f “qQu(G(a, g), g)=a and G(c(g)−1 f “qQu(q, g), g)=q.
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Since Qu is of class Ck in g, the same happens with G. We have

Fu(a, g)=Qu(G(a, g), g) −OG(a, g), a f c(g)P

and taking derivatives with respect to g we obtain

“Fu

“g
:
(a, g)=(a, 0)

=
“Qu

“g
:
(q, g)=(G(a, 0), 0)

+7“qQu(G(a, 0), 0),
“G
“g

:
(a, g)=(a, 0)

8

−7“G
“g

:
(a, g)=(a, 0)

, a f c(0)8−7G(a, 0), a f
dc

dg
:
g=0

8 .

Since q satisfies “qTu(a, q, g)=0, it follows from (27) that

“Fu

“g
:
(a, g)=(a, 0)

=
“Qu

“g
:
(q, g)=(G(a, 0), 0)

−7G(a, 0), a f
dc

dg
:
g=0

8 .

Furthermore

“Qu

“g
:
(q, g)=(q, 0)

=7q, a f
dc

dg
:
g=0

8+
“Tu

“g
:
(q, g)=(q, 0)

for every q ¥ Rd, and thus

“Fu

“g
:
(a, g)=(a, 0)

=
“Qu

“g
:
(q, g)=(G(a, 0), 0)

−7G(a, 0), a f
dc

dg
:
g=0

8

=
“Tu

“g
:
(q, g)=(G(a, 0), 0)

.

It now follows from (23) that

“Fu

“g
:
(a, g)=(a, 0)

=
OG(a, 0), >L z dmq, 0P− Tu(a, G(a, 0), 0) >L

du
dg

|g=0 dmq, 0

>L u(0) dmq, 0

.

Taking a=c(0)−1 f “qQu(q, 0) and since Tu(a, q, 0)=Qu(q, 0) −Oq, a f c(0)P,
we obtain (25). This completes the proof of the theorem. L
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We note that statement 2 of Theorem 12 could be obtained from the
Implicit function theorem applied to the system (26). Then

“Fu

“g
:
(a, g)=(a, 0)

=−
det(

“[PF(Oq, A − a f BP− pu), “qPF(Oq, A − a f BP− pu)]

“(q, g) )

det(
“[PF(Oq, A − a f BP− pu), “qPF(Oq, A − a f BP− pu)]

“(q, p) )
:
(p, a, q, g)=(Fu(a, 0), a, q(a), 0)

.

When (p, a, q, g)=(Fu(a, 0), a, q(a), 0), we have

det 1“[PF(Oq, A − a f BP− pu), “qPF(Oq, A − a f BP− pu)]
“(q, g)

2

=“gPF(Oq, A − a f BP− pu) · det(“
2
qPF(Oq, A − a f BP− pu))

=F
L

17q,
dA
dg

− a f
dB
dg

8− p
du
dg
2 dma, 0 · det(“

2
qPF(Oq, A − a f BP− pu))

and

det 1“[PF(Oq, A − a f BP− pu), “qPF(Oq, A − a f BP− pu)]
“(q, p)

2

=−F
L

u dma, 0 · det(“
2
qPF(Oq, A − a f BP− pu)).

We obtain

“Fu

“g
:
(a, g)=(a, 0)

=
Oq, >L z dma, 0P−Fu(a, 0) >L

du
dg

|g=0 dma, 0

>L u(0) dma, 0

,

where ma, 0 is the unique equilibrium measure of

Oq(a), A(0) − a f B(0)P−Fu(a, 0) u(0).

If there is a cohomology relation between B and u for each g ¥ (−d, d) (as
considered in statement 2 of Theorem 12) then (31) holds. This allows us to
conclude that (25) also holds.

For the constant family u=1, Theorem 12 describes how the entropy
spectrum E(a)=F1(a)=h(F | Ka) varies with g.

Corollary 13. Consider a C1 flow F={jt}t ¥ R, L a compact locally
maximal hyperbolic set for F such that F | L is topologically mixing, and
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A and B two vectors of (C e(L))d whose coordinates are Ck-families of
functions.

1. the entropy spectrum E is of class Ck in g in a neighborhood of
g=0 and analytic in a on int P(MF(L));

2. if, for each i ¥ {1,..., d} and g ¥ (−d, d), the function bi(g) is
F-cohomologous to c i(g), with c=(c1,..., cd): (−d, d) Q Rd of class Ck on
g and independent of x ¥ L, we have

“E

“g
:
(a, g)=(c(0) − 1 f “qQ1(q, 0), 0)

=7q, F
L

dA
dg

:
g=0

8−7q, c(0)−1 f “qQ1(q, 0) f F
L

dB
dg

:
g=0

dmq, 0
8 ,

for every q ¥ Rd, where Q1(q, g)=PF(Oq, A(g)P).

6. DIMENSION SPECTRA

The purpose of this section is to discuss the properties of dimension
spectra. These spectra are obtained by computing the Hausdorff dimension
of level sets of Birkhoff averages (both for positive and negative time).

Let F={jt}t ¥ R be a C1 flow on a manifold M and L … M a compact
F-invariant locally maximal hyperbolic set. For each x ¥ L there exist
stable and unstable local manifolds V s(x) and Vu(x) containing x such that:

1. TxV s(x)=Es(x) and TxVu(x)=Eu(x);

2. jt(V s(x)) … V s(jtx) and j−t(Vu(x)) … Vu(j−tx) for every t > 0;

3. there exist o > 0 and m > 0 such that for each t \ 0,

d(jt y, jtx) [ oe−mtd(y, x) whenever y ¥ V s(x),

d(j−t y, j−tx) [ oe−mtd(y, x) whenever y ¥ Vu(x).
(32)

The flow F is said to be conformal on L if the maps

dxjt | E s(x): E s(x) Q E s(jtx) and dxjt | Eu(x): Eu(x) Q Eu(jtx)

are multiples of isometries for each x ¥ L and t ¥ R.
Given functions (A, B) ¥ C(L)d × C(L)d with B > 0, we consider the

level sets Ka in (8). We also consider Birkhoff averages for negative time.
Namely, given e ¥ N and vectors (F, G) ¥ C(L)e × C(L)e,

F=(f1,..., fe) and G=(g1,..., ge),
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with G > 0, for each b=(b1,..., be) ¥ Re we let

Mb=3
e

i=1

3x ¥ L : lim
t Q − .

> t
0 fi(js x) ds

> t
0 gi(js x) ds

=bi
4 .

We define the dimension spectrum D: Rd × Re
Q R (with respect to F) by

D(a, b)=dimH(Ka 5 Mb), (33)

where dimH Z denotes the Hausdorff dimension of the set Z.

Theorem 14. Let F be a C1+a flow with a compact locally maximal
hyperbolic set L on which F is conformal, and functions (A, B) ¥

C(L)d × C(L)d with B > 0, and (F, G) ¥ C(L)e × C(L)e with G > 0. Then
the following properties hold:

1. for each a ¥ Rd, b ¥ Re, x ¥ Ka, and y ¥ Mb we have

dimH Ka=dimH(Ka 5 Vu(x))+2=dim v Ka+2,

dimH Mb=dimH(Mb 5 V s(y))+2=dimw Mb+2,

where

v(x)=
“

“t
log ||dxjt | Eu(x)||:

t=0
, w(x)=−

“

“t
log ||dxjt | E s(x)||:

t=0
; (34)

2. for each a ¥ Rd and b ¥ Re we have

D(a, b)=dimH Ka+dimH Mb − 3=dim v Ka+dimw Mb+1. (35)

Proof. Let a: L Q R be a continuous function. It follows from (32)
and from the uniform continuity of a on L that for each x ¥ L and d > 0
there exists t0 > 0 such that if y ¥ V s(x) and t > t0 then

:1
t

F
t

t0

a(js y) ds −
1
t

F
t

t0

a(js x) ds: < d.

This implies that V s(x) … Ka for every x ¥ Ka. Furthermore, the set Ka is
F-invariant and thus 1t ¥ R jt(V s(x)) … Ka whenever x ¥ Ka.

Since F is conformal on L, it follows from work of Hasselblatt in
ref. 11 that the weak stable distribution x W E s(x) À E0(x) and the weak
unstable distribution x W Eu(x) À E0(x) are Lipschitz (as observed by
Pesin and Sadovskaya in ref. 15). This ensures that in a sufficiently small
open neighborhood of x ¥ Ka the set Ka is taken by a Lipschitz map with
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Lipschitz inverse onto 1t ¥ I jt(V s(x)) × Vu(x), where I is some open inter-
val containing zero. Therefore,

dimH Ka=dimH(Ka 5 Vu(x))+2

(the detailed proof uses the fact that the Hausdorff dimension and the
upper box dimension of Ka 5 Vu(x) coincide, also in view of the confor-
mality assumption; we refer to refs. 1 and 15 for the detailed argument).

For the second identity, we first note that

F
t

0
v(js x) ds=log ||dxjt | Eu(x)||.

Since the distribution x W Eu(x) is Hölder continuous on L (in fact it is
Lipschitz in our context) and F is of class C1+a, the function v is Hölder
continuous and for each e > 0 there exist constants c1, c2 > 0 such that

c1 exp(−av(x, t, e)) [ [diam(Be(x, t) 5 Vu(x))]a [ c2 exp(−av(x, t, e)).

This ensures that dimH(Z 5 Vu(x))=dim v Z for every set Z … L. The
second identity is obtained by setting Z=Ka. The corresponding statement
concerning Mb is established in an analogous manner.

To prove the second statement we first note that given x ¥ Ka 5 Mb

and a sufficiently small open neighborhood U of x we have Ka 5 U=
1y ¥ Ka 5 U V s(y) and Mb 5 U=1y ¥ Mb 5 U Vu(y). Therefore,

Ka 5 Mb 5 U= 0
y ¥ Ka 5 U

V s(y) 5 0
y ¥ Mb 5 U

Vu(y).

Since the weak stable and unstable distributions are Lipschitz, this identity
implies that for a sufficiently small codimension-one disc D … U trans-
verse to the flow, the set Ka 5 Mb 5 D is taken by a Lipschitz map with
Lipschitz inverse onto the product (Ka 5 Vu(x)) × (Mb 5 Vs(x)). Therefore,
using the fact that the Hausdorff dimension and the upper box dimension
of Ka 5 Vu(x) coincide (and analogously for Mb 5 V s(x)),

dimH(Ka 5 Mb 5 D)=dimH(Ka 5 Vu(x))+dimH(Mb 5 V s(x)).

Since Ka 5 Mb is F-invariant, we obtain

dimH(Ka 5 Mb 5 U)=dimH(Ka 5 Mb 5 D)+1

=dimH(Ka 5 Vu(x))+dimH(Mb 5 V s(x))+1

=dimH Ka+dimH Mb − 3.

This completes the proof. L
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We note that a version of the formula in (35) was obtained by Wolf in
ref. 21, although in a very different context (namely for hyperbolic poly-
nomial automorphisms of C2).

Consider now the functions P: MF(L) Q Rd in (9) and Q: MF(L) Q Re

defined by

Q(m)=1 >L f1 dm

>L g1 dm
,...,

>L fe dm

>L ge dm
2 .

The following is an immediate consequence of Theorems 6, 10, and 14.

Corollary 15. Let F be a C1+a flow with a compact locally maximal
hyperbolic set L on which F is conformal, and functions (A, B) ¥

C e(L)d × C e(L)d with B > 0, and (F, G) ¥ C e(L)e × C e(L)e with G > 0. Then
the following properties hold:

1. if a ¥ int P(MF(L)) and b ¥ int Q(MF(L)) then Ka 5 Mb ] ” and

D(a, b)=max 3 hm(F)
>L v dm

: m ¥ MF(L) and P(m)=a4

+max 3 hm(F)
>L w dm

: m ¥ MF(L) and Q(m)=b4+1,

where v and w are as in (34);
2. the spectrum D is analytic on int P(MF(L)) × int Q(MF(L)).

Proof. It remains to observe that since the distributions x W E s(x)
and x W Eu(x) are Hölder continuous on L, the functions v and w are also
Hölder continuous. L

We now consider the particular case when the Birkhoff averages are
obtained from the Lyapunov exponents. We continue to assume that the
flow F is conformal on L. Let also m be a F-invariant probability measure
on L. By Birkhoff ’s ergodic theorem, for m-almost every x ¥ L there exist
the limits

ls(x)= lim
t Q+.

1
t

log ||dxjt | E s(x)|| and lu(x)= lim
t Q+.

1
t

log ||dxjt | Eu(x)||.

These are the two values of the Lyapunov exponent at x. As observed by
Pesin and Sadovskaya in ref. 15,

ls(x)= lim
t Q+.

−
1
t

F
t

0
w(jyx) dy and lu(x)= lim

t Q+.

1
t

F
t

0
v(jyx) dy.
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We set d=e=2, and consider the pairs of functions A=F=(−w, 1) and
B=G=(v, 1). We also consider the associated dimension spectrum D
in (33). Set P(m)=(>L ls dm, >L lu dm). In view of Corollary 15, for each

(a1, a2), (b1, b2) ¥ int{P(m): m ¥ MF(L)}

the number D(a1, a2, b1, b2) is given by

1
a2

max{hm(F): P(m)=(a1, a2)} −
1
b1

max{hm(F): P(m)=(b1, b2)},

where each m is a measure in MF(L). By Theorem 6 we also have

D(a1, a2, b1, b2)=
1
a2

min{PF(q1(−w − a1)+q2(v − a2) : (q1, q2) ¥ R2}

−
1
b1

min{PF(q1(−w − b1)+q2(v − b2) : (q1, q2) ¥ R2}.
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